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Abstract 10 

Soil organic carbon (SOC) accounts for two-thirds of terrestrial carbon. Yet, the role of soil 11 

physiochemical properties in regulating SOC stocks is unclear, inhibiting reliable SOC 12 

predictions under land use and climatic changes. Using legacy observations from 141,584 soil 13 

profiles worldwide, we disentangle the effects of biotic, climatic and edaphic factors (a total of 14 

30 variables) on the global spatial distribution of SOC stocks in four sequential soil layers down 15 

to 2 m. The results indicate that the 30 variables can explain 70-80% of the global variance of 16 

SOC in the four layers, to which edaphic properties contribute ~60%. Soil lower limit is the 17 

most important individual soil properties, positively associated with SOC in all layers, while 18 

climatic variables are secondary. This dominant effect of soil properties challenges current 19 

climate-driven framework of SOC dynamics, and need to be considered to reliably project SOC 20 

changes for effective carbon management and climate change mitigation. 21 

Introduction 22 
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Soil organic carbon (SOC) represents the largest pool of terrestrial carbon (Le Quéré et al., 23 

2016; Batjes, 2016) and plays a key role in combating climate change and ensuring soil 24 

productivity. To better manage land for maintaining SOC levels or enhancing carbon 25 

sequestration, it is vital to elucidate controlling factors of SOC stabilization and stock. As an 26 

important soil property, it is reasonable to expect that SOC might be integrally influenced by 27 

five predominant factors controlling soil development and formation; namely, climate, 28 

organisms, topography, parent materials, and time (Jenny, 1994). However, climate is usually 29 

prioritized and considered to be critical (Carvalhais et al., 2014) because of its direct effect on 30 

soil carbon inputs via photosynthetic carbon assimilation, and output via microbial 31 

decomposition. But climate-driven predictions of SOC dynamics (e.g., using Earth system 32 

models) remain largely uncertain, particularly across large extents (Todd-Brown et al., 2013; 33 

Bradford et al., 2016).  34 

A primary source of the uncertainty is our poor understanding of how edaphic 35 

properties regulate SOC stabilization and stock in soil (Davidson and Janssens, 2006; Dungait 36 

et al., 2012). For example, SOC can be physically protected from decomposition via occlusion 37 

within soil aggregates and adsorption onto minerals (Six et al., 2000), which create physical 38 

barriers preventing microorganisms to decompose carbon sources (Doetterl et al., 2015; 39 

Schimel and Schaeffer, 2012), but how this protection influences global SOC stocks is unclear. 40 

Additionally, the soil physicochemical environment controls the supply of water, nutrients, 41 

oxygen and other resources, which are required for microbial communities to utilize SOC as 42 

well as for plant carbon assimilation to replenish soil carbon pool. Considering the large spatial 43 

variability of soil properties globally, we need to understand the edaphic controls of SOC 44 

better. By explicitly considering the effect of soil physicochemical properties, we hope to 45 

promote a review of climate-driven frameworks of SOC dynamics.  46 

In addition to our incomplete understanding of the general importance of soil properties 47 
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in regulating SOC stocks, whether and how their effects vary with soil depth are also unclear. 48 

Most studies focus on topsoil layers (e.g., 0–30 cm), even though globally, deeper soil layers 49 

(below 30 cm) store more carbon than topsoils (Jobbágy and Jackson, 2000; Batjes, 2016). This 50 

large subsoil SOC pool may actively respond to climate and land use changes like topsoil SOC. 51 

Studies of whole soil profiles have observed increased loss of subsoil SOC under warming 52 

(Pries et al., 2017; Melillo et al., 2017; Zhou et al., 2018) as well as under additional supply of 53 

fresh carbon (Fontaine et al., 2007). Land uses such as cropping and grazing can also induce 54 

substantial subsoil SOC losses (Sanderman et al., 2017), which is concerning because of the 55 

potential adverse effect of climate and land use changes. It is therefore imperative that we better 56 

understand the controlling factors of SOC in deep soil layers as this will help to develop 57 

unbiased strategies to manage whole-soil profile carbon effectively.  58 

Here, we aim to disentangle the relative importance of climatic, biotic and edaphic 59 

controls on SOC stocks globally in different soil layers and identify their potential interactions 60 

among them. To do so, we assessed data from 141,584 whole-soil profiles across the globe 61 

(Fig. S1) including measurements of SOC and other soil physicochemical properties (Table 62 

S1), collated by the World Soil Information Service (WoSIS) (Batjes et al., 2017) (Table S1). 63 

For each profile, 19 climate-related covariates reflecting seasonality, intra- and inter-annual 64 

variability of climate were obtained from the WorldClim database (Fick and Hijmans, 2017), 65 

the MODIS NPP (net primary productivity) product (Zhao and Running, 2010) was used to 66 

infer apparent carbon input into the soil, and the MODIS land cover product (Channan et al., 67 

2014) to obtain land cover information. Using these data sets, we disentangled the relative 68 

importance of biotic, climatic and edaphic covariates (a total of 30 variables, Table S1) in 69 

controlling the spatial variance in SOC stocks worldwide in four sequential soil layers (i.e., 0–70 

20, 20–50, 50–100, and 100–200 cm), and identified the correlations between SOC stock and 71 

the most important variables. 72 
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Materials and Methods 73 

Observed soil profile data and harmonization 74 

The World Soil Information Service (WoSIS) collates and manages the largest database of 75 

explicit soil profile observations across the globe (Batjes et al., 2017) which forms the 76 

foundation of a series of digital soil mapping products such as the global SoilGrids (Hengl et 77 

al., 2017). The WoSIS dataset is still growing. When we visited the dataset last on 25 March 78 

2019, there were a total of 141,584 profiles (Fig. S1) which were used in this study. These 79 

profile observations were quality-assessed and standardized, using consistent procedures 80 

(Batjes et al., 2017). In each soil profile, multiple layers were sampled for determining SOC 81 

content and/or other soil properties. A total of 48 soil properties were recorded with multiple 82 

variates of the same property (e.g., pH measured in H2O, CaCl2, KCl etc.). In the data 83 

assessment, we excluded those soil properties apparently affected by SOC content (e.g., cation 84 

exchange capacity), and only considered 9 principal soil physicochemical properties other than 85 

SOC itself in the data analysis (Table S1). Taking the advantage of all measurements, however, 86 

other soil properties were used for missing data imputation (see the section 2.2). The layer 87 

depths are inconsistent between soil profiles. We harmonized all soil properties including SOC 88 

to four standard depths (i.e., 0–20 cm, 20–50 cm, 50–100 cm, and 100–200 cm) using mass-89 

preserving splines (Bishop et al., 1999; Malone et al., 2009). This harmonization enables the 90 

calculation of SOC stock in the defined standard layers, making it possible to directly compare 91 

among soil profiles.  92 

SOC stock calculation and filling missing values 93 

We calculated SOC stock (SOCs, kg C m–2) in each standard depth as:  94 

𝑆𝑂𝐶௦ ൌ
ை

ଵ
∙ 𝐷 ∙ 𝐵𝐷 ∙ ቀ1 െ ீ

ଵ
ቁ,                                                                                          (1) 95 
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where OC is the weight percentage SOC content in the fine earth fraction <2 mm, D the soil 96 

depth (i.e., 0.2, 0.3, 0.5 or 1 m in this study), BD the bulk density of the fine earth fraction <2 97 

mm (kg m–3), and G the volume percentage gravel content (> 2 mm) of soil. Amongst the 98 

141,584 soil profiles, unfortunately, only 9,672 profiles have all the measurements of OC, D, 99 

BD and G to enable direct calculation of SOC stock. We call these profiles “stock profiles”. 100 

Another 82,734 profiles have measured OC (i.e., the weight percentage SOC content), 101 

but BD and/or G are missing. We call these profiles “content profiles”. To utilize and take 102 

advantage of all OC measurements, we used generalized boosted regression modelling (GBM) 103 

to perform imputations (i.e., fill missing data). As such, SOCs can be estimated. To do so, for 104 

BD and G in each standard soil depth, GBM was developed based on all measurements of that 105 

property (e.g., BD) in the 141,584 profiles with other 45 soil properties (OC and total carbon 106 

which includes organic and inorganic carbon were excluded) as covariates (i.e., predictors). 107 

The final GBM model was validated using 10-fold cross-validation repeated 10 times, and 108 

applied to predict missing values of BD and G. Table S2 shows the cross-validation statistics 109 

of the GBM for predicting BD and G in each soil depth. After all, a “SOC profiles” database 110 

including “stock profiles” and “content profile” with relevant measurements of other nine soil 111 

properties (Table S1) was obtained, and used to assess the effects of various variables on SOCs. 112 

The prediction error of the GBM were propagated into the calculation of SOCs to account for 113 

uncertainty resulting from data imputation.  114 

Biotic and climatic covariates 115 

For each “SOC profile”, NPP was extracted from MODIS NPP product (Zhao and Running, 116 

2010). The NPP product includes the annual NPP from 2001 to 2015 at the resolution of 1 km2, 117 

which were estimated by analysing satellite data from MODIS using the global MODIS NPP 118 

algorithm (Zhao et al., 2005; Zhao and Running, 2010). NPP is the net carbon gained by plants 119 
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(i.e., the difference between gross primary productivity and autotrophic respiration). If 120 

assuming a steady state of the vegetation (i.e., no long-term directional change of carbon 121 

biomass in plants), NPP will end up in soil via rhizodeposition and litter fall, and equals to total 122 

carbon input into soil. Here we calculated the average NPP based on the data from 2001 to 123 

2015, and called this average NPP the apparent carbon input to soil, acknowledging that not all 124 

ecosystems are at the strict steady state, particularly those ecosystems (e.g., croplands) actively 125 

interact with human activities. The MODIS land cover map (Channan et al., 2014) at the same 126 

resolution of NPP databases was also used to extract the land cover information for each soil 127 

profile. 128 

In addition to NPP and land cover type, 19 climatic variables (Table S1) for each “SOC 129 

profile” were obtained from the WorldClim version 2 (Fick and Hijmans, 2017). The 130 

WorldClim version 2 calculates biologically meaningful variables using monthly temperature 131 

and precipitation during the period 1970-2000. The data at the same spatial resolution of the 132 

NPP data (i.e., ~1 km2) was used in this study. Eleven of the19 climatic variables are 133 

temperature-related (Table S1), and eight are precipitation-related (Table S1). These variables 134 

reflect the seasonality, intra- and inter-annual variability of climate, which would have both 135 

direct (via decomposition) and indirect (via carbon assimilation) effect on SOC stock.  136 

Data analysis 137 

A machine learning-based statistical model - boosted regression trees (BRT) – was performed 138 

to explain the variability of SOCs across the globe and identify important controlling factors. 139 

A big advantage of the BRT model is its ability to model high-dimensional data set, taking into 140 

account nonlinearities and interplay (Elith et al., 2008). Using the BRT model, we modelled 141 

SOCs in each standard depth as a function of edaphic variables in that depth, climatic and biotic 142 

variables (Table S1): 143 
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𝑆𝑂𝐶௦ ൌ 𝑓ሺ𝑒𝑑𝑎𝑝ℎ𝑖𝑐, 𝑐𝑙𝑖𝑚𝑎𝑡𝑖𝑐, 𝑏𝑖𝑜𝑡𝑖𝑐ሻ. (2) 144 

We used a 10-fold cross-validation to constrain the BRT model in R 3.6.1 (R Core Team 2019) 145 

using algorithms implemented in the R package dismo. The amount of variance in SOCs 146 

explained by the model was assessed by the coefficient of determination (R2). To assess the 147 

potential uncertainty induced by the imputation of missing BD and G for estimating SOCs, we 148 

conducted 200 Monte Carlo simulations. For each Monte Carlo simulation, SOCs, if BD and 149 

G are missing, was recalculated using BD and G imputed by GBM plus an error randomly 150 

sampled from the distribution of imputation error. Using the new SOCs estimations, then, a 151 

new BRT model was fitted.  152 

The BRT model allows the estimation of the relative influence of each individual 153 

variables in predicting SOCs, i.e., the percentage contribution of variables in the model. The 154 

relative influence is calculated based on the times a variable selected for splitting when growing 155 

a tree, weighted by squared model improvement due to that splitting, and then averaged over 156 

all fitted trees (Elith et al., 2008; Friedman and Meulman, 2003). As such, the larger the relative 157 

influence of a variable is, the stronger the effect on SOCs is. To ease interpretation, the relative 158 

influence of each variable is at last scaled so that the sum is equal to 100. The overall relative 159 

influences of edaphic (i.e., the sum relative importance of all soil-related variables), climatic 160 

(i.e., the sum relative importance of all climate-related variables), as well as biotic (i.e., NPP 161 

and land cover type) variables were also calculated and compared. As we have 200 BRT 162 

estimations (i.e., 200 Monte Carlo simulations) of the relative influence, we calculated a 163 

weighted average relative influence for each variable with weights based on the R2 of the BRT 164 

model. The partial dependence of SOCs on individual variables was estimated for the two most 165 

important variables and the variables with a relative influence of > 10%. It reveals the marginal 166 

effect of a particular variable on SOCs after accounting for the average effect of all other 167 

variables (Elith et al., 2008; Friedman and Meulman, 2003).  168 
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Considering the potential collinearity in the 19 climatic variables, we conducted another 169 

set of BRT modelling using their principle components. Before fitting the BRT model, a 170 

principle component analysis (PCA) was performed to eliminate potential correlations in the 171 

19 bioclimatic variables. Only were important principal components (PCs) with variances of 172 

greater than 1retained based on Kaiser’s criterion (Kaiser 1960). The PCA was performed using 173 

the function prcomp in the package stats in R 3.6.1 (R Core Team, 2019). All other settings of 174 

BRT modelling were the same to that using all 19 climatic variables. Here, it should be noted 175 

that, in terms of interpretability, the results of climatic PCs are more difficult to explain as they 176 

mask the effect and relative importance of individual climatic variables, which is one of the 177 

key questions our study aims to address and also very important to understand the role of 178 

climate variability and seasonality. So the main texts will focus on the results using all 19 179 

individual climatic variables, if the modelling results are not markedly different from that using 180 

climatic PCs.  181 

Results 182 

Our results indicate that the 30 biotic, climatic and edaphic variables can explain 80%, 73%, 183 

69%, and 73% of the variance of SOC stocks in the four soil layers across the globe, 184 

respectively (Fig. 1). This result is similar to that using four principle components representing 185 

the 19 climatic variables (Fig. S2 and S3). Edaphic variables are consistently the most 186 

important controls of SOC stocks in the four soil layers, albeit both the leading edaphic variable 187 

and relative influence of individual variables are distinct among soil depths (Fig. 2 and S4). 188 

Soil lower limit (LL15, i.e., soil water content obtained at a matric potential of 1,500 kPa) is 189 

the most important in the 0–20, 20–50, and 50–100 cm soil layers, alone contributing 34.1%, 190 

30.5% and 29% to the explained variance, respectively (Fig. 2 and S4). In the 100–200 cm soil 191 

depth, the most important variable is sand content which alone contributes 15% to the explained 192 

variance and LL15 is the second most important contributing 8.2% to the explained variance.  193 
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The second most important parameter is the maximum temperature of warmest month 194 

(T5), contributing 11.1% to the explained variance) in the 0–20 cm layer, while NPP is the 195 

second most important in the deeper two layers (e.g., 20–50 cm and 50–100 cm), contributing 196 

8.9% and 8% to the explained variance, respectively (Fig. 2). The individual contribution of all 197 

other variables is less than 10%, while the unique contribution of most variables is less than 198 

5% (Fig. 2). Our predictions of bulk density (BD) and gravel content (G), which we used to 199 

estimate SOC stocks were accurate (Table S2). Hence, the uncertainty of the models to explain 200 

global SOC stocks in different soil layers was relatively small (Fig. S5).  201 

Summing the relative importance of individual variables, the overall effect of soil 202 

properties is quite consistent among the four layers, accounting for 54.6%, 52.6%, 56.8% and 203 

51.2% of the overall influence of all assessed variables respectively. Overall, climatic variables 204 

account for 35.6%, 37.3%, 34% and 43.3% in the four layers, respectively (Fig. 3). The two 205 

biotic variables (i.e., NPP and land cover type) overall only accounts for only 9.8%, 10.1%, 206 

9.2% and 5.5% in the four layers, respectively (Fig. 3). Using four climatic PCs, the relative 207 

importance of edaphic, climatic and biotic variables shows the similar importance to that using 208 

19 individual climatic variables (Fig. S6 vs Fig. 3). These results demonstrate the dominant 209 

control of soil properties on global SOC stocks.  210 

Fig. 4 shows the marginal effects of the two most important variables controlling SOC 211 

stock after taking into account the average effects of all other predictors. Generally, SOC stock 212 

increases with LL15 in all four soil depths until reaching a plateau when LL15 is relatively 213 

high (Fig. 4A, C, E and H). In the 0–20 cm depth layer, T5 has a negative effect, particularly 214 

under warmer conditions (Fig. 4B). In cooler conditions, the effect of T5 is generally neutral. 215 

Although NPP is the second most important parameter in the middle two layers, its effect is 216 

divergent depending on NPP level (Fig. 4D and F). In the 100–200 cm depth, sand as the most 217 

important variable has negative effect on SOC stock (Fig. 4G). 218 
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Discussion 219 

The dominant role of soil properties 220 

Our results demonstrate the dominant control of soil properties on SOC stocks in the whole-221 

soil profile. Soil physical and chemical properties directly determine the activity of decomposer 222 

community which mediates the decomposition of soil carbon (Derrien et al., 2014; Foesel et 223 

al., 2014; Bernard et al., 2012). More importantly, soil carbon can be physically protected from 224 

decomposition via occlusion with soil aggregates and binding with minerals (Lehmann and 225 

Kleber, 2015; Dungait et al., 2012; Schmidt et al., 2011), while the protection capacity is 226 

largely determined by soil physiochemical properties (Six et al. 2000). These physical 227 

protection processes may lead to soil-dependent stabilization/destabilization of different soil 228 

carbon substrates (Waldrop and Firestone, 2004; Keiluweit et al., 2015; Six et al., 2002).  229 

Few studies have paid particular attention to the dynamics of SOC in subsoils across 230 

large scales. We find that the overall influence of climatic variables on SOC stock is similar in 231 

all soil layers. In a forest soil, a recent study found that SOC in the whole soil profile down to 232 

1 m is sensitive to warming (Melillo et al., 2017). This sensitivity may be general across the 233 

globe. One might expect greater importance of climate in surface soils as topsoil is at the 234 

frontline of interacting with the atmosphere. But our results do not show a clearly decreasing 235 

importance of climate with soil depth. As might be expected, however, the smallest influence 236 

of climate is in the 100–200 cm layer. Field observations are certainly needed to verify this 237 

finding as it may have significant implications on the fate of deep soil carbon under global 238 

climate warming. These results suggested that the final importance of climate for SOC storage 239 

is diluted by its effects on other controls which directly or indirectly affect SOC in opposite 240 

direction to the effect of climate, mechanistically supporting the growing appreciation that the 241 

impact of climate on SOC dynamics is overestimated. 242 
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The importance of soil hydraulic properties and texture 243 

Soil LL15 is consistently one of the two most important individual variables in all soil layers 244 

positively affecting SOC stock. Although SOC may have positive effect on LL15, particularly 245 

when SOC is high (Hudson 1994), more importantly, the importance of LL15 may be attributed 246 

to its effect on plant growth. Theoretically, LL15 is close to the minimal soil moisture required 247 

a plant not to wilt, it thus may strongly regulate plant growth therefore carbon inputs into soil 248 

and final SOC stock. Together with DUL (i.e., drained upper limit – soil water content obtained 249 

at the matric potential of 33 kPa), in addition, LL15 determines the available water capacity of 250 

soil (AWC, i.e., the difference between DUL and LL15) and thus LL15 would affect SOC stock 251 

indirectly via its determination on soil AWC. The available water capacity of soil is associated 252 

with water dynamics and soil porosity and thus may largely regulate oxygen availability for 253 

microorganisms to utilize SOC as well as soil thermal regimes. In addition, AWC couples with 254 

a series of soil hydrological processes such as runoff and drainage, which have direct effects 255 

on the vertical/horizontal translocation of SOC, particularly in the surface soil layer. In the 256 

100–200 cm soil layer, soil LL15 plays a less important role, which may due to that 257 

waterlogging and low oxygen are universal in subsoil. Rather, factors influencing water and 258 

oxygen diffusion may be more important in deeper layers, such as soil texture. In line with this 259 

proposition, our results show that the overall importance of soil texture (i.e., the sum of the 260 

relative influence of clay, silt and sand contents) increases with increasing soil depth (Fig. 2).  261 

Minor role of carbon inputs in determining spatial variability of SOC stocks 262 

The effect of apparent carbon input, NPP, on SOC stock is small, particularly in deeper soil 263 

layers (Fig. 2). The importance of NPP may largely depend on how much NPP ends up in the 264 

soil and how it is translocated to different depths. Total NPP may not be a useful indicator of 265 

actual carbon inputs into different soil depths, particularly in deeper layers. Subsoils may be 266 
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subject to greater environmental constrains than topsoils, such as water logging and low oxygen 267 

level. These environmental constrains may result in more complex SOC stabilization processes 268 

and divergent behaviour of decomposer community (Keiluweit et al., 2017), therefore diluting 269 

the effect of NPP on SOC stock in deeper soil layers. However, here we must to point out that 270 

the minor role of carbon inputs in determining the global spatial distribution of SOC stocks 271 

does not mean that they are not important for local carbon management. Under the same 272 

climatic and edaphic conditions, indeed, carbon inputs should be the predominant factor 273 

controlling if the soil is a carbon sink or source.  274 

Uncertainties and limitations 275 

We have used a diverse and representative dataset across the globe for the analysis, however, 276 

there are still some limitations in the datasets and assessment. First, our study did not bring 277 

land use history and intensity (such as the time length of cropping and the intensity of grazing) 278 

into the analysis, which may significantly affect SOC stabilization processes and thus SOC 279 

stocks in managed landscapes (Sanderman et al., 2017). As anthropogenic land use may change 280 

from year to year, it is challenging to accurately explain SOC stock changes in those systems 281 

that experience intensive human disturbances across large extents. Second, all soil properties 282 

including SOC were treated as constant. In reality, however, some soil properties, particularly 283 

chemical variables such as pH, may actively respond to external disturbance including human 284 

activities. Treating these variables as constant may result in under- or over-estimations of the 285 

variable importance if a variable shows marked temporal variability. Third, in managed 286 

systems, the apparent carbon input represented by NPP may not accurately reflect the real 287 

carbon input into soil (Luo et al., 2018; Pausch and Kuzyakov, 2018), leading to biased 288 

estimation of the importance of C inputs. In cropping areas, for example, yield harvesting and 289 

crop residue removal certainly reduce the fraction of NPP ending up in the soil. Finally, we 290 

would like to point out that, albeit edaphic factors appear to be the dominant controls on SOC 291 
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stock, climate might have an impact on those edaphic factors and hence SOC stocks in the long 292 

term (Jenny 1994). Indeed, Luo et al. (2017) have provided evidence that climate not only 293 

directly but also directly (via its effect on edaphic factors) exerts significant effect on SOC 294 

dynamics. All these limitations should be overcome to provide more robust predictions on the 295 

role of different factors in SOC stabilization and stock, which will be particularly important for 296 

understanding long-term SOC dynamics in managed systems.  297 

Conclusions 298 

Quantitatively, we have demonstrated the dominant role of soil properties in regulating SOC 299 

stock in the whole soil profile at the global scale. This dominance has important implications 300 

for understanding mechanisms of SOC stabilization and destabilization. Previous modelling 301 

and experimental efforts have mostly focused on climatic and biotic aspects, and many of the 302 

studies are over smaller scales. We argue that soil physicochemical characteristics define the 303 

boundary conditions for the climatic and biotic factors. That is, climatic and biotic factors (e.g., 304 

carbon inputs) can regulate the rate of SOC of shifting from one capacity to another, but a soil's 305 

physicochemical properties may inherently determine the SOC stock capacity of soil. It is thus 306 

critical to understand how soil processes mediated by different soil properties in different soil 307 

layers respond to those climatic and biotic factors and land management practices, and feed 308 

this information into the prediction of SOC stock capacity in the whole soil profile. However, 309 

individual soil variables work together involving complex interactions and non-linear 310 

relationships with each other as well as with climate to regulate SOC stock (Fig. 3 and Table 311 

S1). We need more and better quality data (e.g., following the same soil sampling and 312 

measuring procedure and using novel approach for monitoring of soil properties) and 313 

innovative methods (Viscarra Rossel et al., 2017) for representing soil heterogeneity to 314 

facilitate robust prediction of SOC dynamics over large extents. 315 
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Results of this study further demonstrate that globally the influence of individual 316 

climatic variables on SOC stock is weaker than the influence of individual soil properties 317 

regardless of soil depth. Current Earth system models are mostly driven by climate, with few 318 

cases have approximated the regulation of soil properties on carbon decomposability (Tang 319 

and Riley, 2014; Riley et al., 2014). We find that none of the assessed climatic variables was 320 

the most important variable (Fig. 2). Undoubtedly, climate has direct effect on plant growth 321 

and thus potential carbon inputs to the soil, but our results demonstrate that the effect of climate 322 

on SOC stock is much weaker than the effect of soil properties. Our research highlights the 323 

urgent need to consider soil properties and their interactions with climate to provide more 324 

reliable predictions of SOC stock and changes under climatic and land use changes. 325 
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Figure Legends 457 

Fig. 1. An example of the performance of boosted regression trees in explaining soil 458 

organic carbon stock in four standard soil depths across the globe. (A) 0–20 cm, (B) 20–459 

50 cm, (C) 50–100 cm, and (D) 100–200 cm. The data was natural logarithm-transformed. The 460 

dashed line shows the 1:1 line. This result is one of the 200 Monte Carlo simulation results 461 

taking into account uncertainty in estimation of soil organic carbon stock. See Fig. S2 for the 462 

model performance for all 200 simulations.  463 

Fig. 2. The relative influence of individual biotic, climatic and edaphic variables 464 

influencing global soil organic carbon stocks. The result shows the weighted average relative 465 

influence of 200 simulations. See details for the variables in Table S1. 466 

Fig. 3. The overall relative influence of edaphic, climatic and biotic variables on soil 467 

organic carbon stock in four soil depths across the globe. The overall relative influence is 468 

calculated as the sum of the relative influence of individual variables (which is shown in Fig. 469 

2) in each variable group (i.e., edaphic, climatic and biotic variables).  470 

Fig. 4. Partial dependence of soil organic carbon (SOC) stock on the two most important 471 

controls. Panels from top to bottom show the results for 0–20, 20–50, 50–100, and 100–200 472 

cm depths. Y-axes are centered over the distribution of natural logarithm-transformed SOC 473 

stock. Marks on the inside x-axis indicate the distribution of the variable in deciles. All x-axis 474 

variables are standardized. Numbers in parenthesis show the relative influence of the variable.  475 
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Figure 1  476 
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Figure 2 478 
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Figure 3 480 
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Figure 4 482 
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